Part Number Hot Search : 
74LVX273 IRF7807V CR12A AWA8820 44S150 CG75L LBS06607 74LV1G
Product Description
Full Text Search
 

To Download HYS72D128021GR-7-B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
2.5 V 184-pin Registered DDR-I SDRAM Modules 256MB, 512MB &1GByte Modules PC1600 & PC2100 Preliminary Datasheet revision 0.91
* 184-pin Registered 8-Byte Dual-In-Line DDR-I SDRAM Module for PC and Server main memory applications * One bank 32M x 72, 64M x 72, and two bank 64M x 72 and 128M x 72 organization * JEDEC standard Double Data Rate Synchronous DRAMs (DDR-I SDRAM) with a single + 2.5 V ( 0.2 V) power supply * Built with 256Mbit DDR-I SDRAMs in 66Lead TSOPII package * Programmable CAS Latency, Burst Length, and Wrap Sequence (Sequential & Interleave) * Performance: -7 Component Speed Grade Module Speed Grade
fCK fCK
* Auto Refresh (CBR) and Self Refresh * All inputs and outputs SSTL_2 compatible * Re-drive for all input signals using register and PLL devices. * Serial Presence Detect with E2PROM * Jedec standard MO-206 form factor: 133.35 mm (nom.) x 43.18 mm (nom.) x 4.00 mm (max.) (6,80 mm max. with stacked components) * Jedec standard reference layout: Raw Cards A, B and C * Gold plated contacts
-8 PC1600 125 100
Unit
DDR266A DDR200 PC2100 143 133 MHz MHz
Clock Frequency (max.) @ CL = 2.5 Clock Frequency (max.) @ CL = 2
Description The HYS 72Dxx0x0GR are industry standard 184-pin 8-byte Dual in-line Memory Modules (DIMMs) organized as 32M x 72 (256MB), 64M x 72 (512MB) and 128M x 72 (1GB). The memory array is designed with Double Data Rate Synchronous DRAMs for ECC applications. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer.
INFINEON Technologies
1
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Ordering Information
Type
PC2100 (CL=2): HYS 72D32000GR-7-B HYS 72D64000GR-7-B HYS 72D64020GR-7-B HYS 72D128020GR-7-B PC2100R-20330-A1 PC2100R-20330-B1 PC2100R-20330-A1 PC2100R-20330-C1 one bank 256 MB Reg. DIMM one bank 512 MB Reg. DIMM two banks 512 MB Reg. DIMM two banks 1 GByte Reg. DIMM 256 MBit (x8) 256 Mbit (x4) 256 MBit (x8) 256 MBit (x4) (stacked with soldering process) 256 MBit (x4) (stacked with laser welding process)
Compliance Code
Description
SDRAM Technology
HYS 72D128021GR-7-B
PC2100R-20330-C1
two banks 1 GByte Reg. DIMM
PC1600 (CL=2): HYS 72D32000GR-8-B HYS 72D64000GR-8-B HYS 72D64020GR-8-B HYS 72D128020GR-8-B PC1600R-20220-A1 PC1600R-20220-B1 PC1600R-20220-A1 PC1600R-20220-C1 one bank 256 MB Reg. DIMM one bank 512 MB Reg. DIMM two banks 512 MB Reg. DIMM two banks 1 GByte Reg. DIMM 256 MBit (x8) 256 Mbit (x4) 256 MBit (x8) 256 MBit (x4) (stacked with soldering process) 256 MBit (x4) (stacked with laser welding process)
HYS 72D128021GR-8-B
PC1600R-20220-C1
two banks 1 GByte Reg. DIMM
Note:
All part numbers end with a place code (not shown), designating the silicon-die revision. Reference information available on request. Example: HYS 72D32000GR-8-B, indicating Rev.B die are used for SDRAM components The Compliance Code is printed on the module labels and describes the speed sort fe. "PC2100R", the latencies (f.e. "20330" means CAS latency = 2, trcd latency = 3 and trp latency =3 ) and the Raw Card used for this module.
INFINEON Technologies
2
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Pin Definitions and Functions
A0 - A11,A12 BA0, BA1 DQ0 - DQ63 CB0 - CB7 RAS CAS WE CKE0, CKE1 DQS0 - DQS8 CK0, CK0 DM0 - DM8 DQS9 - DQS17 CS0 - CS1 Address Inputs
(A12 for 256Mb & 512Mb based modules)
VDD VSS VDDQ VDDID VDDSPD VREF SCL SDA SA0 - SA2 NC DU RESET
Power (+ 2.5 V) Ground I/O Driver power supply VDD Indentification flag EEPROM power supply I/O reference supply Serial bus clock Serial bus data line slave address select no connect don't use Reset pin (forces register inputs low) *)
Bank Selects Data Input/Output Check Bits (x72 organization only) Row Address Strobe Column Address Strobe Read/Write Input Clock Enable SDRAM low data strobes Differential Clock Input SDRAM low data mask/ high data strobes Chip Selects
*) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the Application Note at the end of this datasheet
Address Format
Density 256 MB 512 MB 512 MB 1 GB Organization 32M x 72 64M x 72 64M x 72 128M x 72 Memory Banks 1 1 2 2 SDRAMs 32M x 8 64M x 4 32M x 8 64M x 4 # of SDRAMs 9 18 18 36 # of row/bank/ columns bits 13/2/10 13/2/11 13/2/10 13/2/11 Refresh 8k 8k 8k 8k Period 64 ms 64 ms 64 ms 64 ms Interval 7.8 s 7.8 s 7.8 s 7.8 s
INFINEON Technologies
3
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Pin Configuration
PIN# Symbol PIN# Symbol PIN# 1 VREF 48 A0 93 2 DQ0 49 CB2 94 3 VSS 50 VSS 95 4 DQ1 51 CB3 96 5 DQS0 52 BA1 97 6 DQ2 KEY 98 7 VDD 53 DQ32 99 8 DQ3 54 VDDQ 100 9 NC 55 DQ33 101 10 RESET 56 DQS4 102 11 VSS 57 DQ34 103 12 DQ8 58 VSS 104 13 DQ9 59 BA0 105 14 DQS1 60 DQ35 106 15 VDDQ 61 DQ40 107 16 DU 62 VDDQ 108 17 DU 63 WE 109 18 VSS 64 DQ41 110 19 DQ10 65 CAS 111 20 DQ11 66 VSS 112 21 CKE0 67 DQS5 113 22 VDDQ 68 DQ42 114 23 DQ16 69 DQ43 115 24 DQ17 70 VDD 116 25 DQS2 71 NC 117 26 VSS 72 DQ48 118 27 A9 73 DQ49 119 28 DQ18 74 VSS 120 29 A7 75 DU 121 30 VDDQ 76 DU 122 31 DQ19 77 VDDQ 123 32 A5 78 DQS6 124 33 DQ24 79 DQ50 125 34 VSS 80 DQ51 126 35 DQ25 81 VSS 127 36 DQS3 82 VDDID 128 37 A4 83 DQ56 129 38 VDD 84 DQ57 130 39 DQ26 85 VDD 131 40 DQ27 86 DQS7 132 41 A2 87 DQ58 133 42 VSS 88 DQ59 134 43 A1 89 VSS 135 44 CB0 90 NC 136 45 CB1 91 SDA 137 46 VDD 92 SCL 138 47 DQS8 139 Note: A12 is used for 256Mbit and 512Mbit based modules only
Symbol VSS DQ4 DQ5 VDDQ DM0/DQS9 DQ6 DQ7 VSS NC NC NC VDDQ DQ12 DQ13 DM1/DQS10 VDD DQ14 DQ15 CKE1 VDDQ NC DQ20 NC / A12 VSS DQ21 A11 DM2/DQS11 VDD DQ22 A8 DQ23 VSS A6 DQ28 DQ29 VDDQ DM3/DQS12 A3 DQ30 VSS DQ31 CB4 CB5 VDDQ CK0 CK0 VSS 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Symbol DM8/DQS17 A10 CB6 VDDQ CB7 KEY VSS DQ36 DQ37 VDD DM4/DQS13 DQ38 DQ39 VSS DQ44 RAS DQ45 VDDQ CS0 CS1 DM5/DQS14 VSS DQ46 DQ47 NC VDDQ DQ52 DQ53 NC VDD DM6/DQS15 DQ54 DQ55 VDDQ NC DQ60 DQ61 VSS DM7/DQS16 DQ62 DQ63 VDDQ SA0 SA1 SA2 VDDSPD
INFINEON Technologies
4
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
RS0 DQS0 DM0/DQS9
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D0 DQS
DQS4 DM4/DQS13
DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D4 DQS
DQS1 DM1/DQS10
DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D1
DQS5 DM5/DQS14
DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D5
DQS2 DM2/DQS11
DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D2 DQS
DQS6 DM6/DQS15
DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D6 DQS
DQS3 DM3/DQS12
DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D3 DQS
DQS7 DM7/DQS16
DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D7
DQS8 DM8/DQS17
CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 CS0 BA0-BA1 A0-A12 RAS CAS CKE0 WE PCK PCK DM I/O 7 I/O 6 I/O 1 I/O 0 I/O 5 I/O 4 I/O 3 I/O 2 CS D8 DQS SCL
VDDSPD Serial PD SDA A0 A1 A2 VDD, V DDQ VREF V SS V DDID
EEPROM D0 - D8 D0 - D8 D0 - D8 D0 - D8 Strap: see Note 4
SA0 SA1 SA2
R E G I S T E R
RS0 -> CS : SDRAMs D0-D8 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8 RA0-RA12 -> A0-A12: SDRAMs D0 - D8 RRAS -> RAS : SDRAMs D0 - D8 RCAS -> CAS : SDRAMs D0 - D8 RCKE0 -> CKE: SDRAMs D0 - D8 RWE -> WE : SDRAMs D0 - D8 CK0, CK 0 --------- PLL* RESET * Wire per Clock Loading Table/Wiring Diagrams
Notes: 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM.
Block Diagram: One Bank 32Mb x 72 DDR-I SDRAM DIMM Module HYS72D32000GR using x8 organized SDRAMs on Raw Card Version A INFINEON Technologies 5 2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
RS1 RS0 DQS0 DM0/DQS9
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D0 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D9
DQS4 DM4/DQS13
DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D4 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D13 DQS
DQS1 DM1/DQS10
DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D10
DQS5 DM5/DQS14
DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D5 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D14
DQS2 DM2/DQS11
DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D2 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D11 DQS
DQS6 DM6/DQS15
DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D6 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D15 DQS
DQS3 DM3/DQS12
DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D3 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D12 DQS
DQS7 DM7/DQS16
DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 Serial PD DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D8 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS D17 SA0 SA1 SA2 DQS SCL A0 A1 A2 SDA V DD, V DDQ VREF V SS V DDID D0 - D17 D0 - D17 D0 - D17 Strap: see Note 4 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D16
DQS8 DM8/DQS17
CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7
V DDSPD
EEPROM
CK0, CK 0 --------- PLL* CS0 CS1 BA0-BA1 A0-A12 RAS CAS CKE0 CKE1 WE PCK PCK RS0 -> CS : SDRAM D0-D8 RS1 -> CS : SDRAM D9-D17 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17 RA0-RA12 -> A0-A12: SDRAMs D0 - D17 RRAS -> RAS : SDRAMs D0 - D17 RCAS -> CAS : SDRAMs D0 - D17 RCKE0 -> CKE: SDRAMs D0 - D8 RCKE1 -> CKE: SDRAMs D9 - D17 RWE -> WE : SDRAMs D0 - D17 RESET * Wire per Clock Loading Table/Wiring Diagrams
R E G I S T E R
Notes: 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM.
Block Diagram: Two Bank 64Mb x 72 DDR-I SDRAM DIMM Modules HYS 72D64020GR Using x8 Organized SDRAMs on Raw Card Version A
INFINEON Technologies
6
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
VSS RS0B RS0A DQS0
DQS DQ0 DQ1 DQ2 DQ3 I/O I/O I/O I/O 0 1 2 3 CS D0 DM
DM0/DQS9
DQ4 DQ5 DQ6 DQ7 DQS CS I/O 0 I/O 1 D9 I/O 2 I/O 3 DM
DQS1
DQ8 DQ9 DQ10 DQ11 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D1 DM
DM1/DQS10
DQ12 DQ13 DQ14 DQ15 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS DQ20 DQ21 DQ22 DQ23 I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D10 DM
DQS2
CS DM DQ16 DQ17 DQ18 DQ19
DM2/DQS11
CS D11 DM
D2
DQS3
CS D3 DM DQ24 DQ25 DQ26 DQ27
DM3/DQS12
CS D12 DM DQ28 DQ29 DQ30 DQ31
DQS4
DQ32 DQ33 DQ34 DQ35 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D4 DM
DM4/DQS13
DQ36 DQ37 DQ38 DQ39 DM
DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3
CS D13
DM
VDDSPD
EEPROM
VDD, VDDQ VREF V SS DM
D0 - D17 D0 - D17 D0 - D17 Strap: see Note 4
DQS5
CS D5 DQ40 DQ41 DQ42 DQ43
DM5/DQS14
DQ44 DQ45 DQ46 DQ47
CS D14
V DDID
DQS6
CS D6 DM DQ48 DQ49 DQ50 DQ51
DM6/DQS15
DQ52 DQ53 DQ54 DQ55
Serial PD DM SCL A0 A1 A2 SDA
CS DQS I/O 0 I/O 1 D15 I/O 2 I/O 3
SA0 SA1 SA2
DQS7
DQS DQ56 DQ57 DQ58 DQ59 I/O I/O I/O I/O 0 1 2 3 CS D7 DM
DM7/DQS16
DQ60 DQ61 DQ62 DQ63 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D16
Notes: 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM.
DQS8
CB0 CB1 CB2 CB3 CS0 BA0-BA1 A0-A11,A12 RAS CAS CKE0 WE PCK PCK
DQS I/O 0 I/O 1 I/O 2 I/O 3
CS
DM8/DQS17
CB4 CB5 CB6 CB7
CS D17
DM
D8
R E G I S T E R
RS 0 -> CS : SDRAMs D0-D17
RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17 RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17 RRAS -> RAS : SDRAMs D0 - D17 RCAS -> CAS : SDRAMs D0 - D17 RCKE0A -> CKE: SDRAMs D0 - D8 RCKEB -> CKE: SDRAMs D9 - D17 CK0, CK 0 --------- PLL* RWE -> WE : SDRAMs D0 - D17 * Wire per Clock Loading Table/Wiring Diagrams RESET
Block Diagram: One Bank 64Mb x 72 DDR-I SDRAM DIMM Modules HYS 72D64000GR using x4 Organized SDRAMs on Raw Card Version B
INFINEON Technologies
7
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
V SS RS1 RS0 DQS0
DQ0 DQ1 DQ2 DQ3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D0 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D18 DM
DM0/DQS9
DQ4 DQ5 DQ6 DQ7 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D9 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D27 DM
DQS1
CS D1 DM CS D19 DM DQ8 DQ9 DQ10 DQ11
DM1/DQS10
DQ12 DQ13 DQ14 DQ15 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D10 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D28 DM
DQS2
DQ16 DQ17 DQ18 DQ19
DM2/DQS11
CS D2 DM CS D20 DM DQ20 DQ21 DQ22 DQ23 CS D11 DM CS D29 DM
DQS3
CS D3 DM CS D21 DM DQ24 DQ25 DQ26 DQ27
DM3/DQS12
CS D12 DM CS D30 DM DQ28 DQ29 DQ30 DQ31
DQS4
DQ32 DQ33 DQ34 DQ35 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D4 DM DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D22 DM
DM4/DQS13
DQ36 DQ37 DQ38 DQ39 DM
CS D13
DM
CS D31
DM
DQS5
CS D5 DM CS D23 DQ40 DQ41 DQ42 DQ43
DM5/DQS14
DQ44 DQ45 DQ46 DQ47
S D14
S D32
DM
DQS6
CS D6 DM CS D24 DM DQ48 DQ49 DQ50 DQ51
DM6/DQS15
DQ52 DQ53 DQ54 DQ55
CS D15
CS D33
DM
DQS7
CS D7 DM CS D25 DM DQ56 DQ57 DQ58 DQ59
DM7/DQS16
CS D16 DQ60 DQ61 DQ62 DQ63 DM
DM
CS D34
DM
DQS8
CS D8 DM CS D26 CB0 CB1 CB2 CB3
DM8/DQS17
CB4 CB5 CB6 CB7 Serial PD SDA DQS I/O 0 I/O 1 I/O 2 I/O 3 CS D17
DM
CS D35
DM
CK0, CK 0 --------- PLL* * Wire per Clock Loading Table/Wiring Diagrams CS0 CS1 BA0-BA1 A0-A12 RAS CAS CKE0 CKE1 WE PC K PC K R E G I S T E R RS0 -> CS : SDRAMs D0-D17 RS1 -> CS : SDRAMs D18 -D35 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D35 RA0-RA12 -> A0-A12: SDRAMs D0 - D35 RRAS -> RAS : SDRAMs D0 - D35 RCAS -> CAS : SDRAMs D0 - D35 RCKE0 -> CKE: SDRAMs D0 - D17 RCKE1 -> CKE: SDRAMs D18 - D35 RWE -> WE : SDRAMs D0 - D35 RESET SCL
V DDSPD
EEPROM
A0
A1
A2
VDD,VDDQ VREF V SS
D0 - D35 D0 - D35 D0 - D35 Strap: see Note 4
SA0 SA1 SA2
Notes:
V DDID
1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM.
Block Diagram: Two Bank 128Mb x 72 DDR-I SDRAM DIMM Modules HYS 72D128020GR using x4 Organized SDRAMs on Raw Card Version C
INFINEON Technologies
8
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Absolute Maximum Ratings
Parameter Symbol min. Input / Output voltage relative to VSS Power supply voltage on VDD /VDDQ to VSS Storage temperature range Power dissipation (per SDRAM component) Data out current (short circuit) VIN, VOUT VDD, VDDQ TSTG PD IOS - 0.5 - 0.5 -55 - - Limit Values max. 3.6 3.6 +150 1 50 V V
o
Unit
C
W mA
Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to recommended operation conditions. Exposure to higher than recommended voltage for extended periods of time affect device reliability
Supply Voltage Levels
Parameter Symbol min. Device Supply Voltage Output Supply Voltage Input Reference Voltage Termination Voltage EEPROM supply voltage VDD VDDQ VREF VTT VDDSPD 2.3 2.3 0.49 x VDDQ VREF - 0.04 2.3 Limit Values nom. 2.5 2.5 0.5 x VDDQ VREF 2.5 max. 2.7 2.7 0.51 x VDDQ VREF + 0.04 3.6 V V V V V 1) 2) 3) Unit Notes
1 Under all conditions, VDDQ must be less than or equal to VDD 2 Peak to peak AC noise on VREF may not exceed 2% VREF (DC). VREF is also expected to track noise variations in VDDQ . 3 VTT of the transmitting device must track VREF of the receiving device.
DC Operating Conditions (SSTL_2 Inputs)
(VDDQ = 2.5 V, TA = 70 C, Voltage Referenced to VSS) Parameter Symbol min. DC Input Logic High DC Input Logic Low Input Leakage Current Output Leakage Current VIH (DC) VIL (DC) IIL IOL VREF + 0.15 - 0.30 -5 -5 Limit Values max. VDDQ + 0.3 VREF - 0.15 5 5 V V 1) - 1) 2) Unit Notes
A A
1) The relationship between the VDDQ of the driving device and the VREF of the receiving device is what determines noise margins. However, in the case of VIH (max) (input overdrive), it is the VDDQ of the receiving device that is referenced. In the case where a device is implemented such that it supports SSTL_2 inputs but has no SSTL_2 outputs (such as a translator), and therefore no VDDQ supply voltage connection, inputs must tolerate input overdrive to 3.0 V (High corner VDDQ + 300 mV). 2) For any pin under test input of 0 V VIN VDDQ + 0.3 V. Values are shown per DDR-SDRAM component.
INFINEON Technologies
9
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Operating, Standby and Refresh Currents (PC1600)
256MB 512MB 512MB x72 x72 x72 1bank 1bank 2bank -8 -8 -8 1GB x72 2bank -8 Notes 5
Symbol
Parameter/Condition
Unit
MAX
IDD0 Operating Current: one bank; active / precharge; tRC = tRC MIN; tCK = tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE <= VIL MAX; tCK = tCK MIN Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle; CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. 810
MAX
1620
MAX
1215
MAX
2430 mA
1, 4
IDD1
900
1800
1305
2610
mA
1, 3, 4
IDD2P
63
126
126
252
mA
2, 4
IDD2F
315
630
630
1260
mA
2, 4
Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle; IDD2Q CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM. Active Power-Down Standby Current: one bank active; power-down mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM. Active Standby Current: one bank active; active / precharge;CS >= VIH MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN Auto-Refresh Current: tRC = tRFC MIN, distributed refresh Self-Refresh Current: CKE <= 0.2V; external clock on; tCK = tCK MIN Operating Current: four bank; four bank interleaving with BL=4; Refer to the following page for detailed test conditions.
198
396
396
792
mA
2, 4
IDD3P
144
288
288
576
mA
2, 4
IDD3N
405
810
810
1620
mA
2, 4
IDD4R
855
1710
1260
2520
mA
1, 3, 4
IDD4W
945
1890
1350
2700
mA
1, 4
IDD5 IDD6 IDD7
1530 27,0 1890
3060 54 3780
1935 54 2295
3870 108 4590
mA mA mA
1, 4 2, 4 1, 3, 4
1. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank) 2. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) 2 * n * IDDx[component] for two bank modules (n: number of components per module bank) 3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions 4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents 5. Test condition for maximum values: VDD = 2.7V ,Ta = 10C
INFINEON Technologies
10
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Operating, Standby and Refresh Currents (PC2100)
256MB 512MB 512MB x72 x72 x72 1bank 1bank 2bank -7 -7 -7 1GB x72 2bank -7 Notes 5
Symbol
Parameter/Condition
Unit
MAX
IDD0 Operating Current: one bank; active / precharge; tRC = tRC MIN; tCK = tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE <= VIL MAX; tCK = tCK MIN 900
MAX
1800
MAX
1395
MAX
2790 mA
1, 4
IDD1
990
1980
1485
2970
mA
1, 3, 4
IDD2P
72
144
144
288
mA
2, 4
Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle; CKE IDD2F >= VIH MIN; tCK = tCK MIN ,address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle; IDD2Q CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM. Active Power-Down Standby Current: one bank active; power-down mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM. Active Standby Current: one bank active; active / precharge;CS >= VIH MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200, and DDR266A, CL=3 for DDR333; tCK = tCK MIN Auto-Refresh Current: tRC = tRFC MIN, distributed refresh Self-Refresh Current: CKE <= 0.2V; external clock on; tCK = tCK MIN Operating Current: four bank; four bank interleaving with BL=4; Refer to the following page for detailed test conditions.
360
720
720
1440
mA
2, 4
225
450
450
900
mA
2, 4
IDD3P
162
324
324
648
mA
2, 4
IDD3N
495
990
990
1980
mA
2, 4
IDD4R
1035
2070
1530
3060
mA
1, 3, 4
IDD4W
1125
2250
1620
3240
mA
1, 4
IDD5 IDD6 IDD7
1620 27,0 2025
3240 54 4050
2115 54 2520
4230 108 5040
mA mA mA
1, 4 2, 4 1, 3, 4
1. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank) 2. The module IDD values are calculated from the component IDD datasheet values as: n * IDDx[component] for single bank modules (n: number of components per module bank) 2 * n * IDDx[component] for two bank modules (n: number of components per module bank) 3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions 4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents 5. Test condition for maximum values: VDD = 2.7V ,Ta = 10C
INFINEON Technologies
11
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
SPD Codes
Byte# Description 256MB 256MB 512MB 512MB 512MB 512MB 1GB x72 x72 x72 x72 x72 x72 x72 1bank 1bank 1bank 1bank 2bank 2bank 2bank -7 -8 -7 -8 -7 -8 -7 HEX HEX HEX HEX HEX HEX HEX 80 80 80 80 80 80 80 08 08 08 08 08 08 08 07 07 07 07 07 07 07 0D 0D 0D 0D 0D 0D 0D 0A 0A 0B 0B 0A 0A 0B 01 01 01 01 02 02 02 48 48 48 48 48 48 48 00 00 00 00 00 00 00 04 04 04 04 04 04 04 70 80 70 80 70 80 70 75 80 75 80 75 80 75 02 02 02 02 02 02 02 82 82 82 82 82 82 82 08 08 04 04 08 08 04 08 08 04 04 08 08 04 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 01 0E 04 0C 01 02 26 C0 1GB x72 2bank -8 HEX 80 08 07 0D 0B 02 48 00 04 80 80 02 82 04 04 01 0E 04 0C 01 02 26 C0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36-40 41 42 43 44 45 46-61 62 63 64 65-71 72 73-90 91-92 93-94 95-98 99-127 128-255
Number of SPD Bytes Total Bytes in Serial PD Memory Type Number of Row Addresses Number of Column Addresses Number of DIMM Banks Module Data Width Module Data Width (cont'd) Module Interface Levels SDRAM Cycle Time at CL = 2.5 Access Time from Clock at CL = 2.5 DIMM Config Refresh Rate/Type SDRAM Width, Primary Error Checking SDRAM Data Width Minimum Clock Delay for Back-to-Back Random Column Address Burst Length Supported Number of SDRAM Banks Supported CAS Latencies CS Latencies WE Latencies SDRAM DIMM Module Attributes SDRAM Device Attributes: General Min. Clock Cycle Time at CAS Latency = 2 Access Time from Clock for CL = 2 Minimum Clock Cycle Time at CL = 1.5 Access Time from Clock at CL = 1.5 Minimum Row Precharge Time Minimum Row Act. to Row Act. Delay tRRD Minimum RAS to CAS Delay tRCD Minimum RAS Pulse Width tRAS Module Bank Density (per bank) Addr. and Command Setup Time Addr. and Command Hold Time Data Input Setup Time Data Input Hold Time Superset Information Minimum Core Cycle Time tRC Min. Auto Refresh Cmd Cycle Time tRFC Maximum Clock Cycle Time tck Max. DQS-DQ Skew tDQSQ X-Factor tQHS Superset Information SPD Revision Checksum for Bytes 0 - 62 Manufacturers JEDEC ID Code Manufacturer Module Assembly Location Module Part Number Module Revision Code Module Manufacturing Date Module Serial Number - open for Customer use
128 256 DDR-SDRAM 13 10 / 11 1/2 x72 0 SSTL_2.5 7ns / 8ns 0.75ns / 0.8ns ECC Self-Refresh, 7.8ms x8 / x4 na tccd = 1 CLK 2, 4 & 8 4 CAS latency = 2 & 2.5 CS latency = 0 Write latency = 1 registered Concurrent Auto Precharge 7.5ns / 10ns 0.75ns / 0.8ns not supported not supported 20ns 15ns 20ns 45ns / 50ns 256MByte / 512MByte 0.9ns / 1.1ns 0.9ns / 1.1ns 0.5ns / 0.6ns 0.5ns / 0.6ns - 65ns / 70ns 75ns / 80ns 12ns 0.5ns / 0.6ns 0.75ns / 1.0ns - Revision 0.0 - - - - - - - - - -
75 A0 75 A0 75 A0 75 A0 75 80 75 80 75 80 75 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50 50 50 50 50 3C 3C 3C 3C 3C 3C 3C 3C 50 50 50 50 50 50 50 50 2D 32 2D 32 2D 32 2D 32 40 40 80 80 40 40 80 80 90 B0 90 B0 90 B0 90 B0 90 B0 90 B0 90 B0 90 B0 50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 00 00 00 00 00 00 00 00 41 46 41 46 41 46 41 46 4B 50 4B 50 4B 50 4B 50 30 30 30 30 30 30 30 30 32 3C 32 3C 32 3C 32 3C 75 A0 75 A0 75 A0 75 A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 CA BF 03 F8 CB C0 04 F9 C1 C1 C1 C1 C1 C1 C1 C1 INFIINFIINFIINFIINFIINFIINFIINFINEON NEON NEON NEON NEON NEON NEON NEON
INFINEON Technologies
12
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Electrical Characteristics & AC Timing for DDR-I components (for reference only) (0 C TA 70 C; V DDQ = 2.5V 0.2V; V DD = 2.5V 0.2V)
Symbol tAC tDQSCK tCH tCL tHP tCK tCK tDH tDS tIPW tDIPW tHZ tLZ tDQSS tDQSQ tQHS tQH tDQSL,H tDSS tDSH tMRD tWPRES tWPST tWPRE tIS Parameter DQ output access time from CK/CK DQS output access time from CK/CK CK high-level width CK low-level width Clock Half Period CL = 2.5 Clock cycle time CL = 2.0 DDR266A -7 Min
- 0.75 - 0.75
DDR200 -8 Min
- 0.8 - 0.8
Unit ns ns tCK tCK ns ns ns ns ns ns ns
Notes 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1, 10 1-4, 11 1-4, 5 1-4, 5 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4, 7 1-4, 6 1-4
Max
+ 0.75 + 0.75
Max
+ 0.8 + 0.8
0.45 0.45
0.55 0.55
0.45 0.45
0.55 0.55
min (tCL, tCH) 7 7.5 0.5 0.5 2.2 1.75
- 0.75 - 0.75 + 0.75 + 0.75
min (tCL, tCH) 8 10 0.6 0.6 2.5 2
- 0.8 - 0.8 + 0.8 + 0.8
12 12
12 12
DQ and DM input hold time DQ and DM input setup time Control and Addr. input pulse width (each input) DQ and DM input pulse width (each input) Data-out high-impedence time from CK/CK Data-out low-impedence time from CK/CK Write command to 1st DQS latching transition DQS-DQ skew (for DQS & associated DQ signals) Data hold skew factor Data Output hold time from DQS DQS input low (high) pulse width (write cycle) DQS falling edge to CK setup time (write cycle) DQS falling edge hold time from CK (write cycle) Mode register set command cycle time Write preamble setup time Write postamble Write preamble Address and control input setup time Address and control input hold time Read preamble Read postamble Active to Precharge command Active to Active/Auto-refresh command period fast slew rate slow slew rate fast slew rate slow slew rate
ns ns tCK ns ns ns tCK tCK tCK ns ns
0.75
1.25
+ 0.5
0.75
1.25
+ 0.6
+ 0.75 tHP-t QHS 0.35 0.2 0.2 14 0 0.40 0.25 0.9 1.0 0.9 1.0 0.9 0.40 45 65 1.1 0.60
120,000
+ 1.0 tHP-tQHS 0.35 0.2 0.2 16 0
0.60
0.40 0.25 1.1 1.1 1.1 1.1 0.9 0.40 50 70
0.60
tCK tCK ns ns ns ns
2-4, 10,11
tIH tRPRE tRPST tRAS tRC
1.1 0.60
120,000
tCK tCK ns ns
1-4 1-4 1-4 1-4
INFINEON Technologies
13
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Electrical Characteristics & AC Timing for DDR-I components (for reference only) (0 C TA 70 C; V DDQ = 2.5V 0.2V; V DD = 2.5V 0.2V)
Symbol Parameter Auto-refresh to Active/Auto-refresh command period Active to Read or Write delay Precharge command period Active bank A to Active bank B command Write recovery time Auto precharge write recovery + precharge time Internal write to read command delay Exit self-refresh to non-read command Exit self-refresh to read command Average Periodic Refresh Interval 256Mbit based 1 75 200 7.8 DDR266A -7 Min tRFC tRCD tRP tRRD tWR tDAL tWTR tXSNR tXSRD tREFI 75 20 20 15 15 Max DDR200 -8 Min 80 20 20 15 15 (twr/tck) + (trp/tck) 1 80 200 7.8 Max ns ns ns ns ns tCK tCK ns tCK
s
Unit
Notes
1-4 1-4 1-4 1-4 1-4 1-4,9 1-4 1-4 1-4 1-4, 8
1. Input slew rate >=1V/ns for DDR266 and = 1V/ns for DDR200. 2. The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are >= 1.0 V/ns. 3. Inputs are not recognized as valid until VREF stabilizes. 4. The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (Note 3) is VTT. 5. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 6. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 7. The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 8. A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device. 9. For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 10. These parameters guarantee device timing, but they are not necessarily tested on each device 11. Fast slew rate >= 1.0 V/ns , slow slew rate >= 0.5 V/ns and < 1V/ns for command/address and CK & CK slew rate >1.0 V/ns, measured between VOH(ac) and VOL(ac)
INFINEON Technologies
14
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Package Outlines Raw Card A (one memory bank) Module Package DDR-I Registered DIMM Modules Raw Card A
256MByte Modules (one physical bank, 9 components)
Front View
133.35 + 0.15
4.0 max.
43.43 + 0.13
4.0
Register
2.3 typ.
PLL 52
Register 53 49.53 6.62 92
pin 1 64.77
2.3 typ.
1.27 + 0.1
Backside View
pin 93 17.80 10.0 144 145 184
2.5D
3 Detail of Contacts A 0.20 + 0.15 2.5 + 0.20 Detail of Contacts B 6.35 0.9R 3.8 typ. 1.8 2.175
3
1+ 0.05
1.27
L-DIM-184-10, Raw Card A, one bank
INFINEON Technologies
15
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Package Outlines Raw Card A (two memory banks) Module Package DDR-I Registered DIMM Modules Raw Card A
512MByte Module (two physical banks, 18 components)
Front View
133.35 + 0.15
4.0 max.
43.43 + 0.13
4.0
Register
2.3 typ.
PLL 52
Register 53 49.53 6.62 92
pin 1 64.77
2.3 typ.
1.27 + 0.1
Backside View
pin 93 17.80 10.0 144 145 184
2.5D
3 Detail of Contacts A 0.20 + 0.15 2.5 + 0.20 Detail of Contacts B 6.35 0.9R 3.8 typ. 1.8 2.175
3
1 + 0.05
1.27
L-DIM-184-10, Raw Card A, two banks
INFINEON Technologies
16
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Package Outlines Raw Card B Module Package DDR-I Registered DIMM Modules Raw Card B
512MByte Modules (one physical bank, 18 components)
Front View
133.35 + 0.15
4.0 max.
43.43 + 0.13
4.0
Register
2.3 typ.
PLL 52
Register 53 49.53 6.62 92
pin 1 64.77
2.3 typ.
1.27 + 0.1
Backside View
pin 93 17.80 10.0 144 145 184
2.5D
3 Detail of Contacts A 0.20 + 0.15 2.5 + 0.20 Detail of Contacts B 6.35 0.9R 3.8 typ. 1.8 2.175
3
1 + 0.05
1.27
L-DIM-184-8, Raw Card B
INFINEON Technologies
17
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Package Outlines Raw Card C Module Package DDR-I Registered DIMM Modules Raw Card C
1 GByte Modules (two physical banks, 36 components)
Front View
133.35 + 0.15
6.8 max.
43.43 + 0.13
4.0
Register
2.3 typ.
PLL 52
Register 53 49.53 6.62 92
pin 1 64.77
2.3 typ.
1.27 + 0.1
Backside View
pin 93 17.80 10.0 144 145 184
2.5D
3 Detail of Contacts A 0.20 + 0.15 2.5 + 0.20 Detail of Contacts B 6.35 0.9R 3.8 typ. 1.8 2.175
3
1 + 0.05
1.27
L-DIM-184-11, Raw Card C
INFINEON Technologies
18
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
APPLICATION NOTE:
Power Up and Power Management on DDR Registered DIMMs
(according to JEDEC ballot JC-42.5 Item 1173) 184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up and to minimize power consumption during low power mode. One feature is externally controlled via a systemgenerated RESET signal; the second is based on module detection of the input clocks. These enhancements permit the modules to power up with SDRAM outputs in a High-Z state (eliminating risk of high current dissipations and/or dotted I/Os), and result in the powering-down of module support devices (registers and PhaseLocked Loop) when the memory is in Self-Refresh mode. The new RESET pin controls power dissipation on the module's registers and ensures that CKE and other SDRAM inputs are maintained at a valid `low' level during power-up and self refresh. When RESET is at a low level, all the register outputs are forced to a low level, and all differential register input receivers are powered down, resulting in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven from the system as an asynchronous signal according to the attached details. Using this function also permits the system and DIMM clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs stay in Self Refresh mode. The function for RESET is as follows:
Register Outputs Data in (D) H L X X X or Hi-Z Data out (Q) H L Qo Illegal input conditions L
Register Inputs RESET H H H H L CK Rising Rising L or H High Z X or Hi-Z CK Falling Falling L or H High Z X or Hi-Z
X : Don't care, Hi-Z : High Impedance, Qo: Data latched at the previous of CK risning and CK falling
As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are maintained low at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low maintains a high impedance state on the SDRAM DQ, DQS and DM outputs -- where they will remain until activated by a valid `read' cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable. The DDR PLL devices automatically detect clock activity above 20MHz. When an input clock frequency of 20MHz or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operating frequency at which all specifications will be met is 95MHz). If the clock input frequency drops below 20MHz (actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are
INFINEON Technologies
19
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
made High-Z, and the differential inputs are powered down -- resulting in a total PLL current consumption of less than 1mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it is tied inactive on the DIMM. This application note describes the required and optional system sequences associated with the DDR Registered DIMM 'RESET' function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore not possible to uniquely control CKE to one physical DIMM bank through the use of the RESET pin. Power-Up Sequence with RESET -- Required 1. The system sets RESET at a valid low level. This is the preferred default state during power-up. This input condition forces all register outputs to a low state independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable low-level at the DDR SDRAMs. 2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR SDRAMs. 3. Stabilization of Clocks to the SDRAM The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches 20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When a stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 sec prior to SDRAM operation. 4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM `NOP' command (with CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would be a `NOP Deselect' command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 5. The system switches RESET to a logic `high' level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs must remain stable). 6. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows their clock receivers, data input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDECpproved initialization sequence). Self Refresh Entry (RESET low, clocks powered off) -- Optional Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking. Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption (RESET low deactivates register CK and CK, data input receivers, and data output drivers).
INFINEON Technologies
20
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
1. The system applies Self Refresh entry command. (CKELow, CSLow, RAS Low, CAS Low, WE High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don't Cares-- with the exception of CKE. 2. The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the registerm inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable lowlevel at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required. 3. The system turns off clock inputs to the DIMM. (Optional) a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Z clock inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address signals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM documentation. b. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register. The deactivate time defines the time in which the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during this operation. 4. The DIMM is in lowest power Self Refresh mode. Self Refresh Exit (RESET low, clocks powered off) -- Optional 1. Stabilization of Clocks to the SDRAM. The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches ~20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. 2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM `NOP' command (with CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this would be a `NOP Deselect' command). A second option is to apply low levels on all of the register inputs, to be consistent with the state of the register outputs. 3. The system switches RESET to a logic `high' level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, RESET timing relationship to a specific clock edge is not required (during this period, register inputs must remain stable). 4. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry (RESET low, clocks running) -- Optional
INFINEON Technologies
21
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh, this is an alternate operating mode for these DIMMs. 1. System enters Self Refresh entry command. (CKE Low, CS Low, RAS Low, CAS Low, WE High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don't Cares -- with the exception of CKE. 2. The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the data and clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs. 3. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes the time in which the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during the operation. 4. The DIMM is in a low power, Self Refresh mode. Self Refresh Exit (RESET low, clocks running) -- Optional 1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM `NOP' command (with CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be a `NOP Deselect' command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 2. The system switches RESET to a logic 'high' level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, it does not need to be tied to a particular clock edge (during this period, register inputs must continue to remain stable). 3. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE outputs in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to accept an input signal, is t (ACT ) as specified in the register and DIMM documentation. 4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry/Exit (RESET high, clocks running) -- Optional As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification explains in detail the method for entering and exiting Self Refresh for this case. Self Refresh Entry (RESET high, clocks powered off) -- Not Permissible In order to maintain a valid low level on the register output, it is required that either the clocks be running and the system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the
INFINEON Technologies
22
2002-09-10 (revision 0.91)
HYS 72Dxx0xxGR-7/8-B Registered DDR-I SDRAM-Modules
sequence defined in this application note. In the case where RESET remains high and the clocks are powered off, the PLL drives a High-Z clock input into the register clock input. Without the low level on RESET an unknown DIMM state will result.
INFINEON Technologies
23
2002-09-10 (revision 0.91)


▲Up To Search▲   

 
Price & Availability of HYS72D128021GR-7-B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X